

Artificial intelligence and secondary use of health data

Data spaces for better healthcare research

Akos Tenyi, PhD Head of Smart Data & Analytics Business Line E- group Hungary

A = everything (and more)

Increasing impact in developing healthcare

Al in healthcare research

AI applications across the human lifespan

@EricTopol

NUMBER OF AI PUBLICATIONS IN HEALTHCARE

AI PRODUCT LIFE CYCLE

E-GROUP Copyright © 2021

AI PRODUCT LIFE CYCLE COVID19 as a use case

Characteristics of 'Bad Data' for Machine Learning

1. Insufficient Quantity of Training Data

 "these results suggest that we may want to reconsider the tradeoff between spending time and money on algorithm development versus spending it on corpus development." (Microsoft, 2001)

2. Non-representative Training Data

- In statistics, sampling bias is a bias in which a sample is collected in such a way that some members of the intended population have a lower or higher sampling probability than others.
- AI models often perform poorly on populations that are not represented in the training data. It is critical for AI training data to mirror the populations for which model are ultimately serving.
- E.g. image-based diagnostic task in 2019 71% used a patient cohort from one of three states: California, Massachusetts or New York. Thirty four states did not contribute data, point to huge patient underrepresentation.

Population	Sample
	\circ \circ \circ
	$\bigcirc \bigcirc $
000000	
000000	

3. Poor-Quality Data

4. Irrelevant Features

E-GROUP Copyright © 2021

ACCESS TO HEALTH DATA FOR RESEARCH IN PRACTICE

- Increase reuse of health data
- Decrease fragmentation of healthcare data

Healthcare data integration

Vertical data integration

wulti-lev	ei and n	nuiti-scale d	ata	Heterogeneous sources of inform	nation
Socioeco	economics Adherence profiles		ce	Wellness Social support	
Environmental Life style risk data factors		risk	Informal Care		
	Clinical data Functional data Biological data			Patient self-management Primary care Specialized care	
				Health Care	
	Transcri	anscriptomics		Public Health	C
Epigenetics Metabolomics		nics	Systems Medicine Clinical trials	\$	
Genetic data Proteomics		ics	Biomedical Research		

Horizontal data integration

E-GROUP Copyright © 2021

Roca, J., Tenyi, A., & Cano, I. (2019). Paradigm changes for diagnosis: using big data for prediction. Clinical Chemistry and Laboratory Medicine (CCLM), 57(3), 317–327.

Problem with current AI solutions

Assumption Centralized dataset Homogenous data Reality in healthcare Different data owners Heterogenous data

With conventional approaches we need to... Move the data from the origin place Solve privacy issues

Cross-enterprise

FEDERATED LEARNING Brings Analytics To The Data

- Solution brings the code to the data, despite conventional machine learning which brings the data to the code
- No need for centralized data from a centralized storage (local disc, cloud, etc.)
- Private data can be kept in the origin place at different data holder
- Local model privacy preserving
- -Secure and fast access to data

Federated learning business functionalities

...rare disease (RD) centers create a data coalition for analysing distributed sensitive RD registries using artificial intelligence methods.

...federated network of national biobanks to integrate divided genomic data assets for analysis and to increase impact and utility.

...federated data market to access sensitive health data for AI model validation.

E-GROUP Copyright © 2021

Federated learning business functionalities

Let's build together dataspaces!

https://www.egroup.hu/ akos.tenyi@egroup.hu

